skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kelly, Kian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Drylands comprise 45% of Earth’s land area and contain ecologically critical soil surface communities known as biocrusts. Biocrusts are composed extremotolerant organisms including cyanobacteria, microfungi, algae, lichen, and bryophytes. Fungi in biocrusts help aggregate these communities and may form symbiotic relationships with nearby plants. Climate change threatens biocrusts, particularly moss biocrusts, but its effects on the biocrust mycobiome remain unknown. Here, we performed a culture-dependent and metabarcoding survey of the moss biocrust mycobiome across an aridity gradient to determine whether local climate influences fungal community composition. As the local aridity index increased, fungal communities exhibited greater homogeneity in beta diversity. At arid and hyper-arid sites, communities shifted toward more extremotolerant taxa. We identified a significant proportion of fungal reads and cultures from biocrusts that could not be classified.Rhodotorula mucilaginosaandR. paludigenawere significantly enriched following surface sterilization of healthy biocrust mosses. This aligns with their known roles as plant endophytes. We also observed septate endophyte colonization in the photosynthetic tissues of mosses from arid climates. Collectively, these results suggest that the biocrust mycobiome will undergo significant shifts in diversity due to climate change, favoring extremotolerant taxa as climate conditions intensify. The survey results also highlight taxa with the potential to serve as bioinoculants for enhancing biocrust resilience to climate change. These findings offer valuable insights into the potential impacts of climate change on drylands and provide crucial information for biocrust conservation. 
    more » « less
    Free, publicly-accessible full text available March 5, 2026
  2. Abstract The host microbiome is integral to metabolism, immune function, and pathogen resistance. Yet, reliance on relative abundance in microbiome studies introduces compositional biases that obscure ecological interpretation, while the absence of robust tools for absolute abundance quantification has limited biological discovery. Here, we apply absolute abundance profiling to uncover host-specific microbial patterns across herpetofauna orders that are masked in relative abundance data. Relative- and absolute abundance-derived bacterial and fungal microbiomes exhibit divergent profiles shaped by compositional bias and multifactorial effects. Absolute abundance identified key genera, Lactococcus, Parabacteroides, and Cetobacterium in salamanders, and Basidiobolus and Mortierella in lizards, turtles, snakes, and tortoises, that consistently emerged as core taxa, revealing host-associated patterns previously obscured by compositional constraints. In closely related Desmognathus species, where environmental and phylogenetic variation was minimized, absolute abundance enabled finer resolution of microbiome dynamics and significantly reduced false discovery rates. Absolute abundance-based network analyses further revealed distinct keystone taxa between the relative and absolute abundance datasets. Despite low redundancy, Basidiobolus exhibited high network betweenness, efficiency, and degree, suggesting its role as a key connector between microbial modules and a contributor to overall network robustness. This predicted structural role aligns with Burt’s structural hole theory, which suggests that nodes linking otherwise disconnected modules occupy influential network positions. These findings underscore the value of absolute abundance in resolving microbial dynamics and supporting meaningful interpretation of host-microbiome associations. This advance is made possible by DspikeIn, a flexible wet-lab and computational framework that enhances ecological resolution and cross-study comparability. 
    more » « less